Math 8 Homework 2

1 Set Basics

For each of the following, determine if the statement is true or false. In each case give a reason or a counterexample.

- (a) $A \cup B \subseteq A \cap B$ for any sets A and B.
- (b) $\emptyset \in \mathcal{P}(A)$ for any set A.
- $(c) \ \{\varnothing\} \in \mathcal{P}(\{\varnothing,\{\varnothing\}\})$
- (d) $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ for any sets A and B.
- (e) $\mathcal{P}(A) \times \mathcal{P}(B) = \mathcal{P}(A \times B)$ for any sets A and B.

2 Set Proofs

Let A, B, C and D be arbitrary sets.

- (a) Prove that $A \subseteq \emptyset$ if and only if $A = \emptyset$.
- (b) Prove that $A \cup B = A$ if and only if $B \subseteq A$.
- (c) Prove that if $A \neq \emptyset$ and $A \times B = \emptyset$, then $B = \emptyset$.
- (d) Suppose that $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B)$. Prove that either $A \subseteq B$ or $A \cap B = \emptyset$.
- (e) Suppose that $A \cup B \subseteq C \cup D$ and $A \cap B = \emptyset$. If $C \subseteq A$, prove that $B \subseteq D$.
- (f) Let $A\Delta B = (A B) \cup (B A)$. Prove that $A\Delta \emptyset = A$.
- (g) Prove that $A\Delta B = \emptyset$ if and only if A = B.
- (h) Prove or disprove: $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.

3 Indexed Collections

(a) Given an indexed family of sets $\{A_i : i \in I\}$ and a set B, consider the statement

$$B - \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (B - A_i).$$

If this is generally true, prove it. If it could be false, give a counterexample.

(b) Let f be a real-valued function on \mathbb{R} . Prove that

$$\bigcup_{n=1}^{\infty} \{ x \in \mathbb{R} : f(x) \ge 1/n \} = \{ x \in \mathbb{R} : f(x) > 0 \}.$$

(c) Given a sequence of sets A_1, A_2, A_3, \ldots define two new sets

$$I = \bigcup_{n=1}^{\infty} \left(\bigcap_{m=n}^{\infty} A_m \right)$$
$$S = \bigcap_{n=1}^{\infty} \left(\bigcup_{m=n}^{\infty} A_m \right)$$

Prove that $I \subseteq S$.

(d) With I and S as above, give an example of sets (A_n) for which $I \neq S$.