Math 8 Homework 2

1 Set Basics

For each of the following, determine if the statement is true or false. In each case give a reason or a counterexample.
(a) $A \cup B \subseteq A \cap B$ for any sets A and B.
(b) $\varnothing \in \mathcal{P}(A)$ for any set A.
(c) $\{\varnothing\} \in \mathcal{P}(\{\varnothing,\{\varnothing\}\})$
(d) $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$ for any sets A and B.
(e) $\mathcal{P}(A) \times \mathcal{P}(B)=\mathcal{P}(A \times B)$ for any sets A and B.

2 Set Proofs

Let A, B, C and D be arbitrary sets.
(a) Prove that $A \subseteq \varnothing$ if and only if $A=\varnothing$.
(b) Prove that $A \cup B=A$ if and only if $B \subseteq A$.
(c) Prove that if $A \neq \varnothing$ and $A \times B=\varnothing$, then $B=\varnothing$.
(d) Suppose that $\mathcal{P}(A)-\mathcal{P}(B) \subseteq \mathcal{P}(A-B)$. Prove that either $A \subseteq B$ or $A \cap B=\varnothing$.
(e) Suppose that $A \cup B \subseteq C \cup D$ and $A \cap B=\varnothing$. If $C \subseteq A$, prove that $B \subseteq D$.
(f) Let $A \Delta B=(A-B) \cup(B-A)$. Prove that $A \Delta \varnothing=A$.
(g) Prove that $A \Delta B=\varnothing$ if and only if $A=B$.
(h) Prove or disprove: $A \Delta(B \Delta C)=(A \Delta B) \Delta C$.

3 Indexed Collections

(a) Given an indexed family of sets $\left\{A_{i}: i \in I\right\}$ and a set B, consider the statement

$$
B-\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I}\left(B-A_{i}\right)
$$

If this is generally true, prove it. If it could be false, give a counterexample.
(b) Let f be a real-valued function on \mathbb{R}. Prove that

$$
\bigcup_{n=1}^{\infty}\{x \in \mathbb{R}: f(x) \geq 1 / n\}=\{x \in \mathbb{R}: f(x)>0\}
$$

(c) Given a sequence of sets $A_{1}, A_{2}, A_{3}, \ldots$ define two new sets

$$
\begin{aligned}
& I=\bigcup_{n=1}^{\infty}\left(\bigcap_{m=n}^{\infty} A_{m}\right) \\
& S=\bigcap_{n=1}^{\infty}\left(\bigcup_{m=n}^{\infty} A_{m}\right)
\end{aligned}
$$

Prove that $I \subseteq S$.
(d) With I and S as above, give an example of sets $\left(A_{n}\right)$ for which $I \neq S$.

